

December 6, 2019 Kleinfelder Project No. 20199999.029A

Mr. Gareth Howell

Los Angeles Department of Water and Power
111 N. Hope Street, Room 1050

Los Angeles, CA 90012

SUBJECT: Updated Baseline Remedial Cost Estimate

for Excavation and Off-Site Disposal of Contaminant-Impacted Soil

Former Figueroa Pump Station

5800 South Figueroa Street, Los Angeles, California

Agreement No. 47503A-9, Site Investigation and Remediation Services

Dear Mr. Howell:

Kleinfelder has prepared this updated remedial cost estimate for the Los Angeles Department of Water and Power (LADWP) concerning proposed remediation, at the subject property ("Site"), of soil impacted by primarily petroleum hydrocarbons and lead at concentrations exceeding proposed remedial goals selected for the Site. The Site consists of an approximately 20,300-square foot, presently-vacant lot bound by South Figueroa Street to the west, West 58th Street to the north, residences to the east, and a railroad easement and West Slauson Avenue to the south (Figure 1). This updated remedial cost estimate addresses applicable changes to California Environmental Protection Agency' Department of Toxic Substances Control (DTSC) or United States Environmental Protection Agency (US EPA) soil screening values for the contaminants of concern subsequent to the submittal in March 20161 of an initial cost estimate along with remedial activities subsequently undertaken at the Site and inflationary cost increases that have occurred since that time.

This memorandum is intended to provide LADWP with estimates of the soil volume exceeding hydrocarbon and lead remediation goals that would need to be excavated and disposed off-Site and baseline remedial costs to do so. Due to physical constraints at the area of a former fuel reservoir that was located on Site where the remediation is to occur, the suggested remedial excavation methodology to be used is bucket augering. Estimated costs for the demolition of a filled-in concrete pit within an otherwise-demolished building and of the subsurface portion of a former water tank otherwise demolished have also been included in this baseline remedial cost estimate.

The estimated costs presented herein are based on several information sources, including subcontractor-provided unit rates for similar projects, subcontractor-provided budgetary estimates specifically for the Site, and engineering estimates based upon Kleinfelder's experience with similar projects. Kleinfelder has made general assumptions to develop the volumes and cost estimates provided herein. As such, the estimates have an associated

¹ Kleinfelder, 2016. Rough Order of Magnitude Cost Estimate for Excavation and Off-Site Disposal of Impacted Soil. Former Figueroa Pump Station, 5800 South Figueroa Street, Los Angeles, California. Agreement No. 47331-5, Site Investigation and Remediation Services. Prepared for Los Angeles Department of Water and Power. March 18.

inherent level of uncertainty. There are several key parameters that significantly affect the impacted soil volume estimates and associated costs provided below, and the estimates may change considerably should the initial assumptions require refinement. Assumptions subject to change include the remedial goals ultimately selected to remediate the hydrocarbon- and lead-impacted soil, as the selected goals affect the calculated volumes of soil requiring remediation and resulting remedial costs. There is additional uncertainty associated with excavation and off-Site disposal remedial options, due to the possibility for discovery, at the time of the remedial activities, of added volumes of soil exceeding the given remedial goals. Additionally, the soil volume and cost estimates address only hydrocarbon- and lead-impacted soil and not other potential contaminants potentially present at the Site. Finally, it is understood that the remedial goals and remedial approach assumed by Kleinfelder for estimating the impacted soil volumes costs have not been provided to date to a regulatory agency for review and approval. Should a regulatory agency become involved, there is a possibility that use of different remedial goals than those assumed may be required, in which case the volume of soil requiring remedial action, and resulting remedial costs, will likely change.

SITE BACKGROUND INFORMATION

Based on Kleinfelder's review of information provided in a report of a Phase I ESA of the Site performed by Dames & Moore,² LADWP operated a pump station on Site from approximately 1908 to 1959. During that time the Site contained two pumps, a boiler, a 175,000-gallon underground water reservoir, and an underground fuel reservoir with a capacity of 874 barrels. The fuel reservoir was supplied by a conveyance line with a fill port situated adjacent to the railroad located directly south of the Site. In 1959, the pump station was removed, the reservoir's supply piping was capped, and the reservoirs were backfilled with unspecified material.

Multiple Phase II ESAs have been performed at the Site and were summarized in Kleinfelder's November 21, 2014 Phase II ESA Report³ concerning the Site. A brief summary of past Site assessment and remediation activities follows:

• A report of a Phase II ESA performed at the Site by Parsons, Inc.⁴ that was reviewed by Kleinfelder indicates 12 exploratory soil bores (SB-1 through SB-12) were drilled and sampled there on August 5, 2003. Except for Bore SB-8, each bore was advanced to an approximate depth of 5 feet below ground surface (bgs). Bore SB-8 was advanced to approximately 10 feet bgs at a location within the footprint of the former fuel reservoir (which had by that time been filled with unspecified material).

_

² Dames & Moore, 1999. Phase 1 Environmental Site Assessment, Former Figueroa Pump Station, LADWP File #W-69468, Northeast Corner of Slauson Avenue and Figueroa Street, Los Angeles, California. Prepared for Los Angeles Department of Water and Power. April 15.

³ Kleinfelder, 2014. Letter with subject: "Phase II Environmental Site Assessment Report, Former Figueroa Pump Station, 5800 South Figueroa Street, Los Angeles, California, Agreement 47051-2, Site Investigation and Remediation Services." Prepared for Los Angeles Department of Water and Power. November 21.

⁴ Parsons, Inc., 2004. *Phase II Environmental Site Assessment, Former Figueroa Pump Station, 5800 South Figueroa Street, Los Angeles, California*. Prepared for Los Angeles Department of Water and Power. October.

- Other limited, unpublished records provided to Kleinfelder by LADWP indicated LADWP advanced and sampled 15 additional exploratory bores (B-13 through B-27) at the Site on August 11, 2005 to approximate depths ranging from 3 feet to 10 feet bgs.
- Remedial activities were subsequently performed at the Site by LADWP in June and July 2009, at which time hydrocarbon-impacted soil was removed by excavating within the approximate footprint of the former fuel reservoir to an approximate depth of 17 feet bgs, at which depth the excavation was halted without completing removal of impacted soils because of slope stability concerns regarding the railroad right-of-way adjoining to the south of the Site. LADWP subsequently backfilled the excavation with a slurry to a depth of approximately 4 feet bgs.
- In May 2013, Kleinfelder performed supplemental soil assessment activities by drilling and sampling seven bores (KLF-1 through KLF-7) in the vicinity of the remedial soil excavation. The bores were advanced using a drill rig equipped with 6-inch outside diameter (OD) hollow-stem augers. Bores KLF-1 through KLF-3 were advanced within the former fuel tank remedial excavation to total depths ranging from approximately 66.5 feet bgs (for Bores KLF-2 and KLF-3) to 91.5 bgs (for Bore KLF-1). Since the ground surface within the former remedial excavation is approximately 4 feet below the surface of the southernmost part of the Site, the corresponding total depths of these three bores beneath that part of the Site are approximately 70.5 feet to 95.5 feet bgs. Bores KLF-4 through KLF-7 were each advanced outside the former remedial excavation to an approximate depth of 71.5 feet bgs.
- In June 2017, remedial activities were performed at the Site by LADWP, consisting of
 excavating the approximate uppermost 3 feet of soil from most of the Site except for an
 approximately 20-foot wide strip just north of the Site's southern property boundary. In
 total, approximately 3,000 tons of soil was reportedly removed and transported from the
 Site for off-Site disposal at an appropriate facility.

CONCEPTUAL DEMOLITION SCOPE, SOIL REMEDIAL GOALS, AND IMPACTED SOIL VOLUME CALCULATIONS

In conjunction with the proposed remedial excavation activities, demolition of the remaining portions of the former below-ground water tank and concrete pit of the former building at the Site will need to be completed. Their assumed construction information is summarized below:

Former Concrete Water Tank:

- Approximately 50-foot diameter buried tank remnant.
- Top of tank wall is approximately situated at present ground surface of Site.
- Tank wall is approximately 1 foot thick and extends to a depth of approximately 12 feet bgs.
- Tank wall is assumed to consist of reinforced concrete.
- Tank bottom is approximately 18 inches thick and is assumed to consist of reinforced concrete.

Former Building Concrete Pit:

- Consists of an approximately 43-foot by 35-foot diameter pit.
- Top of pit walls presently situated at approximately 1-foot bgs.
- Pit walls extend to approximate depth of 8 feet to 9 feet bgs.
- The pit floor remains intact and will need to be removed.

The estimates of volumes of hydrocarbon- and lead-impacted soil are based on Kleinfelder's use of human health risk-based residential soil screening levels issued by the DTSC or US EPA as proposed cleanup levels. For contaminants having one, their current (April 2019) DTSC-recommended screening level for residential soil (referred to as a "DTSC-SL") was used.⁵ If a contaminant has no DTSC-SL, the US EPA's current (November 2019) Regional Screening Level (RSL) for residential soil was used.⁶

Historical analytical data for soil samples collected prior to 2013 are summarized in Tables 1, 2, and 3 (attached). Historical soil analytical data for soil samples collected in 2013 in the vicinity of the former fuel reservoir excavation are summarized in Table 4. Table 5 summarizes soil samples with analytical results that exceed the DTSC-SLs or RSLs (as applicable). A Site plan showing proposed remedial excavation limits based on current Site conditions is presented on Figure 2.

Estimated volumes of contaminated soil requiring removal are summarized below:

Area	Contaminant Exceedance(s) Driving Excavation	Area Affected (square feet)	Depth of Area (feet)	Estimated Volume of Affected Soil (cubic feet)	Estimated Volume of Affected Soil (in-place cubic yards)
EA-1	Excavate shallowest 1 foot along southern portion of the Site	3,021	1	3,021	110
EA-2	DRO, lead	2,339	8	18,712	700
EA-3	DRO, MO, lead	2,020	12	24,240	900
EA-4	DRO, lead	682	2	1,364	50
EA-5	DRO	348	3	1,044	40
EA-6	DRO, lead, naphthalene	883	20	21,127	800
	TOTAL	9,293		69,508	2,600

Notes: DRO – Diesel-range organics (i.e., diesel-range hydrocarbons).

MO – Motor oil-range hydrocarbons.

ASSUMPTIONS

The following assumptions specific to the scope of services were made in preparing this remedial cost estimate:

- The volume of impacted soil that will be excavated via conventional excavation using an excavator is approximately 1,800 in-place cubic yards (rounded).
- The volume of impacted soil that will be excavated via bucket augering is approximately 800 in-place cubic yards (rounded).
- Traffic control will be required at the point of ingress/egress to the Site.
- Excavation depths will vary from 1-foot bas to 20 feet bas.

⁵ DTSC Human and Ecological Risk Office (HERO), 2019. *Human Health Risk Assessment Note, Office of Human and Ecological Risk (HERO) HHRA Note Number 3.* April.

⁶ US EPA, 2019. Regional Screening Levels (RSL) Summary Table (TR=1E-6, HQ=1) November 2019. November.

- Excavation dewatering and treating and discharging recovered groundwater will not be required.
- There are no groundwater impacts resulting from historical activities at the Site requiring assessment or remediation.
- Sloping will only be required at Areas EA-1 and EA-2 (shown on Figure 2).
- Shoring will only be required along a 50-foot length near the western property boundary for EA-2 to facilitate deeper excavation work in that area.
- The in-situ soil weight is approximately 1.3 tons per cubic yard.
- California Environmental Quality Act documentation will not be required.
- Excavated soil (other than non-impacted soil excavated only for sloping purposes) will be disposed as non-Resource Conservation and Recovery Act (RCRA) hazardous waste, and will be transported for disposal to Clean Harbors, Inc.'s Buttonwillow Landfill located in Buttonwillow, California.
- The City of Los Angeles will allow approximately 25 trucks per day to be loaded with excavated impacted soil.
- Up to 71 soil samples will be collected and analyzed for total petroleum hydrocarbons (TPH) with carbon range analysis (using US EPA Method 8015B), volatile organic compounds (full target analyte list including fuel oxygenates, using US EPA Method 8260B), and the California Code of Regulations Title 22 Metals (using US EPA Method 7471A for mercury and US EPA Method 6010B for the remaining 16 metals).
- The excavation areas will be backfilled with certified clean import material that will be compacted and tested for 90-percent relative compaction. The volume of clean import material needed to backfill the remedial excavations back to the approximate elevation of the sidewalk is approximately 5,350 tons (4,100 cubic yards).
- The bucket augering area will be backfilled with a 2-sack cement/sand slurry (approximately 800 cubic yards).
- The site's ground surface will be brought up to approximately the sidewalk elevation during backfilling.
- Demolition, excavation, soil disposal and transportation, and backfill and compaction activities are anticipated to require approximately 50 business days to complete.
- Conventional excavation activities and bucket augering activities will be completed simultaneously during a portion of the 50 business days.
- Bucket augering activities will be completed in approximately 8 business days, with an additional 5 days needed for stockpile management, profiling, loading, and off-Site transportation and disposal.
- Remedial cost estimating includes use of prevailing wage labor rates for subcontractors.
- The estimate assumes no standby time or delays will be incurred due to inclement weather.

The estimated remedial costs for excavation and off-Site disposal of hydrocarbon- and lead-impacted soil are summarized on the following page:

Conceptual Remedial Costs

TASK DESCRIPTION	SUBTOTAL
Project Management/Engineering/Permitting /Reporting	\$72,000
Mobilization/Demobilization	\$35,000
Demolition/Excavation/Backfill/Compaction/ Compaction Testing/Laboratory Analysis/Field Oversight	\$1,105,000
Bucket Augering/Backfilling/Laboratory Analysis/Field Oversight	\$200,000
Offsite Transportation and Disposal of Impacted Soil (as Non-RCRA Hazardous Waste, including California Board of Equalization Fee)	\$533,000
Remedial Construction Completion Report	\$20,000
Contingency (20%)	\$393,000
Total	\$2,358,000

CONCLUSION

The baseline remedial cost estimate for demolition of the remaining portions of the former water tank and building pit, remediation of hydrocarbon- and lead-impacted soil to current residential soil screening levels, and assumed disposal of the excavated soil as a non-RCRA hazardous waste, is \$2,358,000, including a 20 percent contingency. This cost estimate is not a proposal for services. It is only intended to facilitate LADWP's planning and budgeting. Kleinfelder emphatically recommends LADWP request, from qualified contractors, formal proposals for remediation and other related services for the work discussed herein.

Site remediation to industrial soil screening levels instead of residential screening levels is expected to lower remedial costs only marginally unless deep petroleum-impacted soil is allowed to remain in place. Use of industrial soil screening levels for Site remediation will result in restricted use of the Site and increase long-term potential risk for the owner. In addition, if restricted Site use is via regulatory enforcement, inspections and maintenance will be necessary and associated annual costs will be incurred for operation and maintenance and reporting to the regulatory agency.

AUTHORIZATION AND LIMITATIONS

Kleinfelder's services have been performed in a manner consistent with that level of care and skill ordinarily exercised by other members of the profession practicing in the same locality, under similar conditions, and at the date the services were provided. Kleinfelder's conclusions, opinions, and recommendations are based on a limited number of observations and data. It is possible that conditions may vary between or beyond the data evaluated. Kleinfelder makes no guarantee or warranty, expressed or implied, regarding the services, communication (oral or written), report, opinion, or instrument of service provided.

Kleinfelder offers various levels of investigative and engineering services to suit the varying needs of different clients. Although risk will never be eliminated, more detailed and extensive studies will yield more information, which may help understand and manage the level of risk involved. Since detailed study and analysis involves greater expense, Kleinfelder's clients participate in determining levels of service that provide adequate information for their purposes at acceptable levels of risk. More extensive studies may be performed to reduce these uncertainties.

This baseline remedial cost estimate is not a proposal. It is provided solely for LADWP's planning purposes. The actual cost for Site remedial activities may vary considerably from the cost provided in this estimate due to unforeseen circumstances, including, among others, seasonal labor demands, fuel costs changes, and waste disposal cost changes.

CLOSING REMARKS

We thank you for the opportunity to provide Kleinfelder's professional environmental services and look forward to continued work with you on this project.

Sincerely,

KLEINFELDER, INC.

John Donatucci, PE Senior Engineer

George Johnson, PE Project Manager

Cc: Mr. George Faeustle, LADWP Mr. Jeffrey Walker, Kleinfelder

Table 1 – Historical Soil Analytical Data – Organic Compounds Attachment:

Table 2 – Historical Soil Analytical Data – TTLC Metals

Table 3 – Historical Soil Analytical Data – STLC and TCLP Metals

Table 4 – 2013 Soil Analytical Data

Table 5 – Soil Screening Level Exceedances Summary

Figure 1 – Site Location Map

Figure 2 – Site Plan Showing Proposed Excavation Limits

TABLES

Table 1 Historical Soil Analytical Data – Organic Compounds 5800 S. Figueroa Street Los Angeles, California

	a P	ate	Sample Depth	GRO	품	терн (С9 - С36)	to C28)	r Oil C36)	1-g C12)	to C22)	r Oil C32)		Volatile C	rganic Comp	oounds	
Bore	Sample Number	Sample Date	San De		TRPH		DR(Motor (C22 - C	TPH-9 (C4 - C12)	DR(Motor (C23 - C	Benzene	Ethylbenzene	Toluene	m,p-Xylene	o-Xylene
	San	ιχ	(feet bgs)	8015B (mg/kg)	418.1 (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8260 (µg/kg)	8260 (µg/kg)	8260 (µg/kg)	8260 (µg/kg)	8260 (μg/kg)
·	DTSC-SL or RSL	for Resident	tial Soil	520 / 82			96 / 97	230,000 / 2,400	520 / 82	96 / 97	230,000 / 2,400	330*	5,800	1,100,000*	550,000	650,000
	SB-1-0.5	8/5/2003	0.5	-	-	-	•	-	0.02 J	80 J	850	-	-	-	-	-
SB-1	SB-1-3	8/5/2003	3.0	-	-	-	-	-	0.03 J	ND(12)	ND(12)	ND(7.3)	2 J	1 J	3 J	1 J
	SB-1-5	8/5/2003	5.0	-	-	-	•	-	0.02 J	30	120	0.5 J	0.3 J	0.6 J	1 J	0.6 J
	SB-2-0.5	8/5/2003	0.5	-	-	-	•	-	0.02 J	230	760	-	-	•	-	-
SB-2	SB-2-3	8/5/2003	3.0	-	-	-	•	-	0.03 J	51 J	600	0.4 J	2 J	0.4 J	6 J	2 J
	SB-2-5	8/5/2003	5.0	-	-	-	•	-	ND(1.1)	ND(11)	23	ND(5.3)	0.6 J	0.4 J	0.8 J	ND(5.3)
	SB-3-0.5	8/5/2003	0.5	-	-	-	•	-	0.02 J	53	450	-	-	1	-	-
SB-3	SB-3-3	8/5/2003	3.0	-	-	-	-	-	0.02 J	4 J	82	0.7 J	0.8 J	0.4 J	1 J	0.6 J
	SB-3-5	8/5/2003	5.0	-	-	-	-	-	0.02 J	780	2,900	ND(6.6)	1 J	0.5 J	1 J	0.5 J
	SB-4-0.5	8/5/2003	0.5	-	-	-	-	-	0.02 J	31 J	300	-	-	-	-	-
SB-4	SB-4-3	8/5/2003	3.0	-	-	-	-	-	0.02 J	170	1,000	ND(6.7)	1 J	0.5 J	1 J	0.5 J
	SB-4-5	8/5/2003	5.0	-	-	-	-	-	ND(1.0)	240	2,500	ND(5.1)	0.8 J	0.4 J	1 J	0.4 J
	SB-5-0.5	8/5/2003	0.5	-	-	-	-	-	ND(1.1)	ND(11)	ND(11)	-	-	-	-	-
SB-5	SB-5-3	8/5/2003	3.0	-	-	-	-	-	ND(1.3)	ND(11)	ND(11)	ND(6.3)	0.8 J	0.5 J	1 J	0.4 J
30-0	SB-5-5	8/5/2003	5.0	-	-	-	-	-	0.02 J	ND(11)	ND(11)	ND(6.0)	1 J	0.4 J	3 J	2 J
	SB-55-5	8/5/2003	5.0	-	-	-	-	-	ND(1.1)	ND(11)	ND(11)	ND(5.4)	0.7 J	0.3 J	1 J	0.4 J
	SB-6-0.5	8/5/2003	0.5	-	-	-	-	-	0.02 J	13 J	590	-	-	-	-	-
SB-6	SB-66-0.5	8/5/2003	0.5	-	-	-	-	-	ND(1.0)	65 J	1,500	-	-	-	-	-
SB-0	SB-6-3	8/5/2003	3.0	-	-	-	-	-	0.02 J	ND(11)	9 J	0.5 J	1 J	0.6 J	1 J	0.6 J
	SB-6-5	8/5/2003	5.0	-	-	-	-	-	ND(1.0)	ND(11)	ND(11)	ND(5.1)	1 J	0.6 J	1 J	0.4 J
	SB-7-0.5	8/5/2003	0.5	-	-	-	-	-	0.02 J	830	1,900	-	-	-	-	-
SB-7	SB-7-3	8/5/2003	3.0	-	-	-	-	-	ND(1.1)	11	74	ND(5.7)	1 J	0.5 J	1 J	0.5 J
	SB-7-5	8/5/2003	5.0	-	-	-	-	-	ND(1.3)	2 J	ND(13)	ND(6.3)	1 J	0.4 J	1 J	0.7 J
	SB-8-0.5	8/5/2003	0.5	-	-	-	-	-	0.02 J	7 J	67	-	-	-	-	-
	SB-8-3	8/5/2003	3.0	-	-	-	-	-	0.05 J	22 J	220	7.0	2 J	0.6 J	4 J	2 J
SB-8	SB-8-5	8/5/2003	5.0	-	-	-	-	-	0.1 J	28 J	180	5 J	2 J	1 J	4 J	2 J
	SB-8-10	8/5/2003	10.0	-	-	-	-	-	0.04 J	560	1,300	0.5 J	2 J	0.8 J	2 J	1 J
	SB-9-0.5	8/5/2003	0.5	-	-	-	-	-	0.02 J	ND(11)	ND(11)	-	-	-	-	-
	SB-99-0.5	8/5/2003	0.5	-	-	-	-	-	ND(1.1)	25 J	200	-	-	-	-	-
SB-9	SB-9-3	8/5/2003	3.0	-	-	-	-	-	ND(1.0)	ND(11)	6 J	ND(5.2)	0.6 J	0.4 J	0.9 J	ND(5.2)
	SB-9-5	8/5/2003	5.0	-	-	-	-	-	ND(1.0)	ND(11)	4 J	ND(5.2)	0.7 J	0.3 J	0.9 J	0.4 J

Table 1 Historical Soil Analytical Data – Organic Compounds 5800 S. Figueroa Street Los Angeles, California

	mber	ate	Sample Depth	GRO	ткрн	ТЕРН (С9 - С36)	30 - C28)	or Oil - C36)	TPH-g (C4 - C12)	30 - C22)	or Oil - C32)		Volatile C	Organic Comp	oounds	
Bore	Sample Number	Sample Date	San				DR(Motor (C22 - C		DR(Motor (C23 - C	Benzene	Ethylbenzene	Toluene	m,p-Xylene	o-Xylene
	San	ι	(feet bgs)	8015B (mg/kg)	418.1 (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8260 (µg/kg)	8260 (µg/kg)	8260 (µg/kg)	8260 (µg/kg)	8260 (µg/kg)
	DTSC-SL or RSL	. for Resident	tial Soil	520 / 82			96 / 97	230,000 / 2,400	520 / 82	96 / 97	230,000 / 2,400	330*	5,800	1,100,000*	550,000	650,000
	SB-10-0.5	8/5/2003	0.5	-	-	-		-	0.02 J	23 J	230	•	-	-	-	-
SB-10	SB-100-0.5	8/5/2003	0.5	-	-	-	-	-	ND(1.1)	28 J	600	-	-	-	-	-
	SB-10-3	8/5/2003	3.0	-	-	-	-	-	ND(1.2)	ND(11)	ND(11)	ND(5.8)	1 J	0.4 J	1 J	0.5 J
	SB-10-5 SB-11-0.5	8/5/2003 8/5/2003	5.0 0.5	-	-	-	-	-	ND(1.2) 0.02 J	ND(11)	ND(11)	ND(6.0)	1 J	0.4 J	1 J	0.4 J
SB-11	SB-11-0.5 SB-11-3	8/5/2003	3.0	-	-	-	-	-	0.02 J ND(1.2)	44 ND(11)	190 ND(11)	- ND(6.1)	- 1 J	- 0.6 J	- 1 J	- 0.5 J
05 11	SB-11-5	8/5/2003	5.0	-		_		-	ND(1.2)	ND(11)	ND(11)	ND(5.3)	0.5 J	0.0 J	0.8 J	0.5 J
	SB-12-0.5	8/5/2003	0.5	-	-	-	-	-	ND(1.1)	64	920	-	-	-	-	-
SB-12	SB-12-4	8/5/2003	4.0	-	-	-	-	-	0.02 J	200 J	1,500	0.4 J	1 J	0.6 J	2 J	0.8 J
	SB-12-5	8/5/2003	5.0	-	-	-	-	-	0.02 J	14	190	ND(5.6)	0.9 J	0.6 J	1 J	0.5 J
	B13-1	8/11/2005	1.0	-	660	-	-	-	-	-	-	-	-	-	-	-
	B13-3	8/11/2005	3.0	-	260	-	-	-	-	-	-	-	-	-	-	-
B13	B13-5	8/11/2005	5.0	-	410	-	-	-	-	-	-	-	-	-	-	-
	B13-9	8/11/2005 8/11/2005	9.0 10.0	-	41,400 2,960	2,280 1,200	ND(20)	-	-	-	-	-	-	-	-	-
	B13-10 B14-1	8/11/2005	1.0	-	1,090	1,200	ND(20)	-	-	-	-	-	-	-	-	-
B14	B14-3	8/11/2005	3.0	_	130	_		_	_		-	_	_		_	-
	B14-5	8/11/2005	5.0	-	40	-	-	-	-	-	-	_	_	_	_	-
	B15-1	8/11/2005	1.0	-	20,690	-	-	-	-	-	-	-	-	-	-	-
B15	B15-3	8/11/2005	3.0	-	54	-	-	-	-	-	-	-	-	-	-	-
	B15-5	8/11/2005	5.0	-	52	-	-	-	-	-	-	-	-	-	-	-
546	B16-1	8/11/2005	1.0	-	1,290	-	-	-	-	-	-	-	-	-	-	-
B16	B16-3	8/11/2005	3.0	-	1,980	-	-	-	-	-	-	-	-	-	-	-
	B16-10 B17-1	8/11/2005 8/11/2005	10.0	-	580	-	-	-	-	-	-	-	-	-	-	-
	B17-1 B17-3	8/11/2005	1.0 3.0	-	3,650 1,540	-	-	-	-	-	-	-	-	-	-	-
B17	B17-5	8/11/2005	5.0	-	1,180	_		-	-		-	-	-	-	_	-
	B17-10	8/11/2005	10.0	-	140	-	-	-	-	-	-	-	-	-	-	-
	B18-1	8/11/2005	1.0	-	380	-	-	-	-	-	-	-	-	-	-	-
B18	B18-3	8/11/2005	3.0	-	52	-	-	-	-	-	-	-	-	-	-	-
	B18-5	8/11/2005	5.0	-	90	-	-	-	-	-	-	-	-	-	-	-
D40	B19-1	8/11/2005	1.0	-	310	-	-	-	-	-	-	-	-	-	-	-
B19	B19-3	8/11/2005	3.0	-	50	-	-	-	-	-	-	-	-	-	-	-
	B19-5	8/11/2005	5.0	-	25 J	-	-	-	-	-	-	-	-	-	-	-
	B20-1 B20-3	8/11/2005 8/11/2005	1.0 3.0	-	27,000 1,300	-	-	-	-	-	-	-	-	-	-	-
B20	B20-5	8/11/2005	5.0	-	8,660	-	-	-	-	-	-	-	-	-		-
	B20-10	8/11/2005	10.0	-	16,360	-	-	-	-	-	-	-	-	-	-	-

Table 1 Historical Soil Analytical Data – Organic Compounds 5800 S. Figueroa Street Los Angeles, California

	Number	Date	Sample Depth	GRO	ткрн	ТЕРН (С9 - С36)	30 - C28)	or Oil - C36)	TPH-g (C4 - C12)	30 - C22)	or Oil - C32)		Volatile C	Organic Comp	oounds	
Bore	Sample Nu	Sample [San	5	TR	TE (C9 -	DR(C10 -	Motor (C22 - C	TP (C4 -	DR(Motor (C23 - C	Benzene	Ethylbenzene	Toluene	m,p-Xylene	o-Xylene
	San	ဖိ	(feet bgs)	8015B (mg/kg)	418.1 (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8260 (μg/kg)	8260 (µg/kg)	8260 (µg/kg)	8260 (µg/kg)	8260 (µg/kg)
	DTSC-SL or RSL	_ for Resident	tial Soil	520 / 82			96 / 97	230,000 / 2,400	520 / 82	96 / 97	230,000 / 2,400	330*	5,800	1,100,000*	550,000	650,000
	B21-1	8/11/2005	1.0	-	104		-	-	-	-	-	-	-	-	-	-
B21	B21-5	8/11/2005	5.0	-	170	934	ND(4)	-	-	-	-	-	-	-	-	-
	B21-9	8/11/2005	9.0	-	48,000 / 11,30	9,980	9,980	-	-	-	-	-	-	-	-	-
	B22-1	8/11/2005	1.0	-	490	-	•	•	-	•	-	•	-	-	-	-
B22	B22-5	8/11/2005	5.0	-	11 J	-	-	•	-	-	-	-	-	-	-	-
	B22-9	8/11/2005	9.0	-	34	-	-	1	-	-	-	1	-	1	-	-
	B23-1	8/11/2005	1.0	-	2,840	-	-	-	-	-	-	-	-	-	-	-
B23	B23-3	8/11/2005	3.0	-	29	-	-	-	-	-	-	-	-	-	-	-
	B23-5	8/11/2005	5.0	-	34	-	-	-	-	-	-	-	-	-	-	-
B24	B24-1	8/11/2005	1.0	-	420	-	-	-	-	-	-	-	-	-	-	-
DZ-1	B24-3	8/11/2005	3.0	-	27	-	-	-	-	-	-	-	-	-	-	-
B25	B25-1	8/11/2005	1.0	-	2,720	-	-	-	-	-	-	-	-	-	-	-
B20	B25-3	8/11/2005	3.0	-	28	-	-	-	-	-	-	-	-	-	-	-
B26	B26-1	8/11/2005	1.0	-	940	-	-	-	-	-	-	-	-	-	-	-
520	B26-3	8/11/2005	3.0	-	24	-	-	-	-	-	-	-	-	-	-	-
	B27-1	8/11/2005	1.0	-	1,700	-	-	-	-	-	-	-	-	-	-	-
B27	B27-3	8/11/2005	3.0	-	3,900	-	-	-	-	-	-	-	-	-	-	-
	B27-5	8/11/2005	5.0	-	100	-	-	-	-	-	-	-	-	-	-	-
Excavation	58th & Fig	7/8/2009	17.0	29.2	70,100	•	24,000	ND(16)	-	-	-	ND(0.7)	ND(0.6)	ND(0.6)	ND(1.1)	ND(0.6)

Notes: bgs Below ground surface.

GRO Gasoline range organics (equivalent to total petroleum hydrocarbons as gasoline).

TRPH Total recoverable petroleum hydrocarbons.
TEPH Total extractable petroleum hydrocarbons.

(C9 - C36) Carbon chain range of analysis.

DRO Diesel range organics (equivalent to total petroleum hydrocarbons as diesel).

TPH-g Total petroleum hydrocarbons as gasoline.

8015B United States Environmental Protection Agency (US EPA) analytical method number.

mg/kg Milligrams per kilogram.

μg/kg Micrograms per kilogram.

DTSC-SL or RSL Screening value for residential soil. Values shown with an asterisk (*) are recommended residential soil screening levels provided in the California Department of Toxic Substances Control, Human and Ecological Risk Office's "Human Health Risk Assessment (HHRA) Note, HERO HHRA Note Number: 3, DTSC-modified Screening Levels (DTSC-SLs), Release Date: April 2019." Values with no

asterisk are US EPA Regional Screening Levels for residential soil (Hazard Quotient of 1.0, revised November 2019). RSL values shown for TPH-g, TPH-d, and TPH-o are Aliphatic/Aromatic Low, Medium, and High, respectively. Values shown for VOCs have been converted from mg/kg to µg/kg.

NV No value available.

ND

Analysis not performed on sample.

J Estimated concentration between method detection limit and practical quantitation limit.

Not present at concentration at or above the practical quantitation limit (which is shown in parentheses).

Yellow shading Indicates reported concentration is higher than the residential RSL Screening Value.

20199999.029A/LAN19L104212 December 6, 2019

Table 2 Historical Soil Analytical Data – TTLC Metals 5800 S. Figueroa Street Los Angeles, California

Bore	Sample Number	Sample Date	Sample Depth	Antimony Antimony	Arsenic Arsenic	Barium Barium	Beryllium	Cadminm B0109	Total Chromium	C C C C C C C C C C C C C C C C C C C	O C C C C C C C C C C C C C C C C C C C	Pe gg	Wercury 7471A	Molybdenum 6010B	S S S S S S S S S S S S S S S S S S S	Selenium 8	Sil∨er	Thallium 0000	Vanadium B	Zi uc
			(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	DTSC-SL or RSL f	for Residential	Soil (mg/kg)	31	0.11*	15,000	16*	910*	120,000*	23	3,100	80*	1.0*	390	820*	390	390	0.78	390	23,000
SB-1	SB-1-0.5	8/5/2003	0.5	-	4.0	-	-	•	-	-	-	109	0.12J	-	-	-	-	-	-	-
SB-1	SB-1-3 SB-1-5	8/5/2003 8/5/2003	3 5	-	1.2 2.1	-	-	-	-	-	-	1.2 38.7	0.013J 0.20J	-	-	-	-	-	-	-
	SB-2-0.5	8/5/2003	0.5		1.1	-	-	-	-	<u> </u>	-	50.0	0.20J	-	-	-	-	-	-	-
SB-2	SB-2-3	8/5/2003	3	-	4.1	-	-	-	-	-	-	90.9	0.097J	-	-	-	-	-	-	-
	SB-2-5	8/5/2003	5	-	1.9	-	-	-	-	-	-	3.5	0.13J	-	-	-	-	-	-	-
00.0	SB-3-0.5	8/5/2003	0.5	-	3.7	-	-	-	-	-	-	184	0.16J	-	-	-	-	-	-	-
SB-3	SB-3-3	8/5/2003	3	-	3.9	-	-	-	-	-	-	30.3	0.091J	-	-	-	-	-	-	-
	SB-3-5 SB-4-0.5	8/5/2003 8/5/2003	5 0.5	-	2.9 5.7	-	-	-	-	-	-	31.9 181	0.16J 0.13J	-	-	-	-	-	-	-
SB-4	SB-4-3	8/5/2003	3	-	3.9	-	-	-	-	<u>-</u>	-	98.6	0.10J	-	-	-		-	-	-
	SB-4-5	8/5/2003	5	-	4.0	-	-	-	-	-	-	23.9	0.13J	-	-	-	-	-	-	-
	SB-5-0.5	8/5/2003	0.5	-	2.2	-	-	-	-	-	-	3.5	0.078J	-	-	-	-	-	-	-
SB-5	SB-5-3	8/5/2003	3	-	2.5	-	-	-	-	-	-	3.6	0.056J	-	-	-	-	-	-	-
	SB-5-5	8/5/2003	5	-	2.2	-	-	-	-	-	-	3.1	0.11J	-	-	-	-	-	-	-
	SB-55-5	8/5/2003	5	-	1.6	-	-	-	-	-	-	2.8	0.0097J	-	-	-	-	-	-	-
	SB-6-0.5 SB-66-0.5	8/5/2003 8/5/2003	0.5 0.5	-	1.9 2.3	-	-	-	-	-	-	173 271	0.061J ND(0.21)	-	-	-	-	-	-	-
SB-6	SB-6-3	8/5/2003	3		1.2	-	-	-	-	<u> </u>	-	3.2	0.047J	-	-	-	-	-	-	-
	SB-6-5	8/5/2003	5	-	0.71	-	-	_	_	-	-	2.9	0.11J	_	_	_	-	-	-	_
	SB-7-0.5	8/5/2003	0.5	-	4.2	-	-	-	-	-	-	126	0.39	-	-	-	-	-	-	-
SB-7	SB-7-3	8/5/2003	3	-	1.2	-	-	-	-	-	-	108	0.076J	-	-	-	-	-	-	-
	SB-7-5	8/5/2003	5	-	0.55	-	-	-	-	-	-	1.7	0.022J	-	-	-	-	-	-	-
	SB-8-0.5	8/5/2003	0.5	-	2.7	-	-	-	-	-	-	125	0.18J	-	-	-	-	-	-	-
SB-8	SB-8-3 SB-8-5	8/5/2003 8/5/2003	3	-	1.6 2.1	-	-	-	-	-	-	46.5	2.7 2.1	-	-	-	-	-	-	-
	SB-8-10	8/5/2003	5 10		7.0	-	-	-	-	<u>-</u>	-	126 401	0.54	-	-	-	-	-	-	-
	SB-9-0.5	8/5/2003	0.5	_	1.6	-	-	_	_	-	-	5.5	0.13J	_	_	_	-	-	-	-
SB-9	SB-99-0.5	8/5/2003	0.5	-	3.2	-	-	-	-	-	-	103	0.038J	-	-	-	-	-	-	-
36-9	SB-9-3	8/5/2003	3	-	1.3	-	-	-	-	-	-	4.7	0.060J	-	-	-	-	-	-	-
	SB-9-5	8/5/2003	5	-	1.5	-	-	-	-	-	-	3.3	0.092J	-	-	-	-	-	-	-
	SB-10-0.5	8/5/2003	0.5	-	1.3	-	-	-	-	-	-	85.5	0.12J	-	-	-	-	-	-	-
SB-10	SB-100-0.5 SB-10-3	8/5/2003 8/5/2003	0.5 3	-	2.0 0.62	-	-	-	-	-	-	3.5	ND(0.21) 0.075J	-	-	-	-	-	-	-
	SB-10-5	8/5/2003	5		1.2	-	-	-	-	<u> </u>	-	4.8	0.0753 0.12J	-	-	-	-	-	-	-
	SB-11-0.5	8/5/2003	0.5	-	0.77	-	-	-	-	-	-	5.0	0.085J	-	-	-	-	-	-	-
SB-11	SB-11-3	8/5/2003	3	-	2.1	-	-	-	-	-	-	4.2	0.074J	-	-	-	-	-	-	-
	SB-11-5	8/5/2003	5	-	0.39	-	-	-	-	-	-	3.8	0.070J	-	-	-	-	-	-	-
25 :-	SB-12-0.5	8/5/2003	0.5	-	3.4	-	-	-	-	-	-	140	0.0072J	-	-	-	-	-	-	-
SB-12	SB-12-4	8/5/2003	4	-	1.7	-	-	-	-	-	-	46.5	0.17J	-	-	-	-	-	-	-
	SB-12-5 B13-1	8/5/2003 8/11/2005	5 1	6.3	3.3 4.5J	70.6	- ND(0.3)	- 1.3J	9.4	11.4	6.3	115 10.2	ND(0.22)	- 0.9J	5.8	8.6	- ND(2.5)	- ND(2.5)	26.0	34.6
	B13-3	8/11/2005	3	9.3	5.0J	140.2	0.5J	1.8J	17.3	17.8	15.3	7.9	-	0.9J	10.4	ND(0.7)	ND(2.5)	ND(2.5) ND(2.5)	40.2	51.0
B13	B13-5	8/11/2005	5	8.0	3.5J	138.0	0.4J	1.8J	20.0	18.0	12.5	13.8	-	1.10	10.4	ND(0.7)	ND(2.5)	ND(2.5)	40.1	49.1
	B13-9	8/11/2005	9	3.4J	ND(1.0)	89.5	ND(0.3)	0.9J	8.4	9.3	8.1	15.0	-	1.10	11.9	0.7J	ND(2.5)	ND(2.5)	23.5	24.2
	B13-10	8/11/2005	10	9.2	3.6J	229.7	0.4J	2.3J	15.8	16.1	10.9	193.2	-	0.8J	10.4	ND(0.7)	ND(2.5)	ND(2.5)	36.0	94.7
	B14-1	8/11/2005	1	7.7	4.2J	105.1	0.4J	1.8J	12.6	14.6	12.5	82.9	-	0.5J	8.0	ND(0.7)	ND(2.5)	ND(2.5)	32.5	59.1
B14	B14-3	8/11/2005	3	4.2	3.4J	86.0	ND(0.3)	1.2J	14.4	10.7	5.9	6.6	-	0.2J	6.5	2.0J	ND(2.5)	ND(2.5)	24.8	23.5
	B14-5	8/11/2005	5	8.2	2.4J	89.9	0.3J	1.4J	11.8	13.8	7.3	3.6J	-	0.6J	7.4	ND(0.7)	ND(2.5)	ND(2.5)	29.2	32.8

Table 2 Historical Soil Analytical Data - TTLC Metals 5800 S. Figueroa Street Los Angeles, California

Bore	Sample Number	Sample Date	Sample Depth	Antimony	Arsenic	Barium	Beryllium	Cadmium	Total Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
	0,			6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	7471A	6010B	6010B	6010B	6010B	6010B	6010B	6010B
			(feet bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	DTSC-SL or RSL	for Residential	Soil (mg/kg)	31	0.11*	15,000	16*	910*	120,000*	23	3,100	80*	1.0*	390	820*	390	390	0.78	390	23,000
	B15-1	8/11/2005	1	5.6	4.3J	92.7	ND(0.3)	1.2J	15.0	12.0	17.7	28.6	-	2.40	22.4	ND(0.7)	ND(2.5)	ND(2.5)	27.4	50.5
B15	B15-3	8/11/2005	3	8.1	6.4	96.7	0.3J	1.1J	14.0	13.3	8.4	6.3	-	2.30	7.4	4.5	ND(2.5)	ND(2.5)	32.0	30.5
	B15-5	8/11/2005	5	8.1	3.1J	91.4	0.3J	1.5J	12.9	15.0	8.2	4.7	-	0.8J	7.4	1.2J	ND(2.5)	ND(2.5)	33.2	40.9
	B16-1	8/11/2005	1	8.1	3.8J	92.5	0.4J	1.5J	12.3	13.8	11.2	33.9	-	0.7J	8.0	ND(0.7)	ND(2.5)	ND(2.5)	32.2	47.8
B16	B16-3	8/11/2005	3	9.7	1.7J	210.3	0.3J	1.8J	36.1	19.9	20.0	11.0	-	0.6J	13.0	ND(0.7)	ND(2.5)	ND(2.5)	58.8	68.4
	B16-10	8/11/2005	10	10.7	4.5J	138.0	0.4J	1.5J	15.2	13.3	9.1	32.6	-	0.6J	10.3	ND(0.7)	ND(2.5)	ND(2.5)	38.0	56.0
	B17-1	8/11/2005	1	10.7	4.6J	128.3	0.5J	2.1J	19.4	16.7	16.7	65.3	-	0.4J	13.8	ND(0.7)	ND(2.5)	ND(2.5)	41.5	69.7
B17	B17-3	8/11/2005	3	7.1	3.6J	120.7	0.5J	1.9J	17.3	18.2	16.0	40.2	-	0.6J	12.2	ND(0.7)	ND(2.5)	ND(2.5)	38.9	76.2
]	B17-5	8/11/2005	5	7.4	6.1	167.2	0.7J	2.7J	23.1	21.2	19.8	65.4	-	0.9J	19.4	ND(0.7)	ND(2.5)	ND(2.5)	64.0	121.0
	B17-10	8/11/2005	10	2.0J	5.9	89.9	ND(0.3)	1.3J	13.8	11.8	10.0	40.2	-	0.4J	7.2	10.0	ND(2.5)	ND(2.5)	25.5	39.9
	B18-1	8/11/2005	1	6.9	3.8J	98.7	0.3J	1.9J	12.7	14.9	12.2	63.5	-	0.7J	7.8	8.7	ND(2.5)	ND(2.5)	32.9	146.2
B18	B18-3	8/11/2005	3	7.7	5.8	129.6	0.5J	2.0J	16.7	18.9	14.0	12.2	-	2.1	10.6	ND(0.7)	ND(2.5)	ND(2.5)	42.0	50.8
	B18-5	8/11/2005	5	8.8	3.7J	114.2	0.4J	1.5J	15.2	17.4	9.2	3.6J	-	0.9J	8.7	ND(0.7)	ND(2.5)	ND(2.5)	36.3	40.8
540	B19-1	8/11/2005	1	7.5	4.6J	115.9	0.4J	2.3J	15.9	16.0	26.6	96.4	-	1.3	12.8	7.6	ND(2.5)	ND(2.5)	37.2	156.7
B19	B19-3	8/11/2005	3	10.0	4.5J	135.4	0.5J	2.1J	18.2	20.1	18.6	26.4	-	0.6J	11.1	ND(0.7)	ND(2.5)	ND(2.5)	44.2	62.2
	B19-5	8/11/2005	5	8.1	3.4J	118.5	0.4J	1.8J	15.7	17.6	10.2	6.2	-	0.4J	9.6	ND(0.7)	ND(2.5)	ND(2.5)	37.6	42.7
	B20-1	8/11/2005	1	1.5J	4.5J	69.2	ND(0.3)	1.1J	8.7	10.4	24.8	30.1	-	ND(0.2)	9.5	10.4	ND(2.5)	ND(2.5)	26.7	40.1
B20	B20-3	8/11/2005	3	13.3	8.4	788.0	ND(0.3)	3.0J	20.6	15.2	50.0	257.4	-	1.1	12.1	32.6	ND(2.5)	ND(2.5)	28.6	863.0
	B20-5	8/11/2005	5	8.2	7.9	92.9	0.3J	1.7J	19.2	13.8	47.9	33.6	-	1.6	18.3	ND(0.7)	ND(2.5)	ND(2.5)	27.9	59.1
	B20-10	8/11/2005	10	2.5J 9.4	1.2J 5.1	64.2 96.3	ND(0.3)	0.9J	6.3 13.9	7.3 15.3	4.8 10.9	6.1 14.6	-	0.5J 2.3	7.8 8.6	ND(0.7)	ND(2.5)	ND(2.5)	21.5	13.1 42.7
	B21-1	8/11/2005	5	9.4 7.5	9.1	160.7	0.4J 0.4J	1.4J 1.8J	17.5	15.3	41.2	41.0	-		13.2	ND(0.7) ND(0.7)	ND(2.5)	ND(2.5)	34.4 34.5	79.9
B21	B21-5 B21-9	8/11/2005 8/11/2005	9	2.7J	5.9	74.4	ND(0.3)	1.8J	8.5	6.8	4.2	8.9	-	0.9J 0.7J	6.0	ND(0.7) ND(0.7)	ND(2.5) ND(2.5)	ND(2.5) ND(2.5)	17.1	126.3
	B21-9B	8/11/2005	9	5.9	6.4	99.4	0.3J	1.2J	16.2	11.6	35.1	80.4	-	2.3	22.6	0.9J	ND(2.5)	ND(2.5)	52.5	130.3
	B21-9B B22-1	8/11/2005	1	10.4	10.6	122.4	0.3J 0.4J	1.5J	14.3	14.3	13.0	19.5	-	0.8J	9.7	8.2	ND(2.5)	ND(2.5)	32.3	49.8
B22	B22-5	8/11/2005	5	8.8	2.8J	141.3	0.5J	1.73 1.9J	16.6	18.5	12.9	12.4	_	0.4J	9.9	ND(0.7)	ND(2.5)	ND(2.5)	40.2	50.2
	B22-9	8/11/2005	9	3.4J	3.8J	350.8	ND(0.3)	3.4	11.1	11.3	7.5	1,016		0.43 0.7J	5.9	25.2	ND(2.5)	ND(2.5)	25.5	620.4
	B23-1	8/11/2005	1	1.0J	ND(1.0)	84.9	ND(0.3)	1.2J	8.6	9.6	13.7	329.3	-	0.4J	6.6	1.3J	ND(2.5)	ND(2.5)	23.6	71.6
B23	B23-3	8/11/2005	3	8.2	3.4J	103.9	0.4J	1.8J	13.9	16.1	9.2	3.4J	_	0.4J	7.7	ND(0.7)	ND(2.5)	ND(2.5)	35.1	36.2
	B23-5	8/11/2005	5	7.8	2.3J	93.4	0.4J	1.4J	12.9	14.4	7.5	3.2J	-	0.3J	7.2	ND(0.7)	ND(2.5)	ND(2.5)	32.8	33.6
.	B24-1	8/11/2005	1	3.0J	4.8J	101.8	0.4J	1.6J	8.1	10.9	13.2	208.8	-	0.4J	5.8	6.4	ND(2.5)	ND(2.5)	24.8	57.0
B24	B24-3	8/11/2005	3	8.3	4.5J	96.3	0.3J	1.4J	12.4	14.7	8.2	4.4J	-	0.3J	7.5	ND(0.7)	ND(2.5)	ND(2.5)	32.8	33.5
	B25-1	8/11/2005	1	2.1J	4.9J	88.2	ND(0.3)	1.4J	9.6	10.2	11.8	165.6	_	0.4J	9.0	ND(0.7)	ND(2.5)	ND(2.5)	27.5	53.5
B25	B25-3	8/11/2005	3	9.4	2.8J	113.6	0.4J	1.5J	15.4	16.8	9.2	5.5	_	0.43 0.6J	8.5	ND(0.7)	ND(2.5)	ND(2.5)	37.4	39.8
	B26-1	8/11/2005	1	6.8	3.0J	97.5	ND(0.3)	1.3J	10.4	12.1	10.9	147.1	-	0.63 0.4J	7.5	ND(0.7)	ND(2.5)	ND(2.5)	26.0	48.6
B26			-				. ,	2.4J	_						12.9	· /	, ,			
	B26-3	8/11/2005	3	6.5	5.4	157.2	0.6J	2.4J 1.5J	21.3	22.9	19.4 30.4	18.3	-	0.6J		ND(0.7)	ND(2.5)	ND(2.5)	50.7	66.4
P07	B27-1	8/11/2005	1	8.1	5.9	129.1	ND(0.3)		11.6	12.1		25.6	-	0.5J	7.9	ND(0.7)	ND(2.5)	ND(2.5)	26.6	83.3
B27	B27-3	8/11/2005	3	8.3	5.1	190.9	0.5J	2.7J	17.6	17.5	26.1	347.3	-	0.3J	13.6	6.5	ND(2.5)	ND(2.5)	38.2	206.4
	B27-5	8/11/2005	5	0.8J	3.1J	105.1	0.3J	1.3J	11.8	10.2	10.9	12.6	-	ND(0.2)	8.6	0.7J	ND(2.5)	ND(2.5)	22.2	20.5

Notes: 6010B United States Environmental Protection Agency (US EPA) analytical method number.

bgs Below ground surface. mg/kg Milligrams per kilogram.

DTSC-SL or RSL Screening value for residential soil. Values shown with an asterisk (*) are recommended residential soil screening levels provided in the California Department of Toxic Substances Control, Human and Ecological Risk Office's "Human Health Risk Assessment (HHRA) Note, HERO HHRA Note Number: 3, DTSC-modified Screening Levels (DTSC-SLs), Release Date: April 2019." Values with no asterisk are US EPA Regional Screening Levels for residential soil (Hazard Quotient of 1.0, revised November 2019).

Values shown for total chromium and thallium are for chromium (III) and thallium (soluble salts), respectively.

ND Not present at concentration at or above the practical quantitation limit (which is shown in parentheses). Estimated concentration between method detection limit and practical quantitation limit. J

Analysis not performed on sample.

Yellow shading Indicates reported concentration is higher than residential soil DTSC-SL or RSL (as applicable).

Table 3 Historical Soil Analytical Data – STLC and TCLP Metals 5800 S. Figueroa Street Los Angeles, California

Bore	Sample Number	Sample Date	a Sample Depth	Antimony Antimony	Arsenic August	Barium Barium	Beryllium 6010B	Cadmium B0109	Total Chromium	Copalt Goloo	e010B	Fead Lead	Molybdenum	S C C C C C C C C C C C C C C C C C C C	Selenium 6010B	Silver 6010B	Thallium 4010B	Vanadium M010B	Zinz Zinz 6010B
			bgs)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
		STLC		15	5	100	0.75	1	560/5	80	25	5	350	20	1	5	7	24	250
SOLUBLI	E METALS BY WI	TCLP	(mg/L)	NV	5	100	NV	1	5	NV	NV	5	NV	NV	1	5	NV	NV	NV
SOLUBL			1	0.420	0.402.1	0.70	0.055	0.420	0.002	0.455	0.260	2.030	0.026	0.175	ND(0.044)	ND(0.05)	ND(0.0E)	0.404	2.710
	B13-1 B13-3	8/11/2005 8/11/2005	3	0.138 0.062 J	0.102 J 0.120	0.72 1.11	0.055 0.016 J	0.128 0.046 J	0.083 0.049	0.155 0.122	0.268 0.142	0.093 J	0.026 0.059	0.175 0.146	ND(0.014) ND(0.014)	ND(0.05) ND(0.05)	ND(0.05) ND(0.05)	0.194 0.181	3.710 0.332
B13	B13-5	8/11/2005	5	0.002 J 0.024 J	0.120 0.092 J	0.61	ND(0.006)	0.040 J	0.049	0.122	0.142	1.164	0.059	0.146	ND(0.014)	ND(0.05)	ND(0.05)	0.161	0.979
210	B13-9	8/11/2005	9	0.024 J	0.065 J	0.79	0.043	0.089	0.146	0.102	0.130	0.636	0.030	0.314	ND(0.014)	ND(0.05)	ND(0.05)	0.203	0.892
	B13-10	8/11/2005	10	0.070 J	0.080 J	0.75	0.007 J	0.013 J	0.086	0.251	0.182	1.228	0.033	0.265	ND(0.014)	ND(0.05)	ND(0.05)	0.377	1.239
	B14-1	8/11/2005	1	0.056 J	0.072 J	1.80	ND(0.006)	0.018 J	0.059	0.110	0.256	2.462	0.025	0.125	ND(0.014)	ND(0.05)	ND(0.05)	0.190	0.794
B14	B14-3	8/11/2005	3	ND(0.016)	0.162	2.50	0.008 J	0.021 J	0.211	0.050	0.084	0.261	0.015 J	0.111	ND(0.014)	ND(0.05)	ND(0.05)	0.138	0.219
	B14-5	8/11/2005	5	0.056 J	0.033 J	1.25	ND(0.006)	ND(0.013)	0.047	0.093	0.104	0.226	0.013 J	0.093	ND(0.014)	ND(0.05)	ND(0.05)	0.140	0.110
	B15-1	8/11/2005	1	0.098	0.113	1.11	ND(0.006)	0.020 J	0.554	0.111	0.420	1.037	0.162	0.971	ND(0.014)	ND(0.05)	ND(0.05)	0.155	1.387
B15	B15-3	8/11/2005	3	0.216	0.262	1.83	0.206	0.847	0.657	0.579	0.257	0.363	ND(0.004)	0.716	0.458	ND(0.05)	ND(0.05)	0.320	3.767
	B15-5	8/11/2005	5	ND(0.016)	0.111	0.50	ND(0.006)	ND(0.013)	0.054	0.100	0.119	0.033 J	ND(0.004)	0.098	ND(0.014)	ND(0.05)	ND(0.05)	0.180	0.321
	B16-1	8/11/2005	1	0.022 J	0.114	0.62	ND(0.006)	ND(0.013)	0.066	0.078	0.340	1.329	0.019 J	0.117	ND(0.014)	ND(0.05)	ND(0.05)	0.187	0.944
B16	B16-3	8/11/2005	3	0.053 J	0.089 J	0.49	ND(0.006)	ND(0.013)	0.064	0.099	0.110	0.339	ND(0.004)	0.086	ND(0.014)	ND(0.05)	ND(0.05)	0.161	1.129
	B16-10	8/11/2005	10	0.053 J	0.078 J	0.46	ND(0.006)	0.021 J	0.067	0.205	0.368	1.616	0.014 J	0.313	ND(0.014)	ND(0.05)	ND(0.05)	0.761	1.963
	B17-1	8/11/2005	1	0.375	0.385	1.71	ND(0.006)	ND(0.013)	0.346	0.122	0.119	1.319	ND(0.004)	0.259	0.303	ND(0.05)	ND(0.05)	0.080	3.037
B17	B17-3	8/11/2005	3	0.051 J	0.065 J	0.97	ND(0.006)	0.015 J	0.084	0.258	0.250	1.197	0.032	0.257	ND(0.014)	ND(0.05)	ND(0.05)	0.448	1.302
517	B17-5	8/11/2005	5	0.072 J	0.087 J	0.65	ND(0.006)	0.022 J	0.070	0.241	0.443	2.039	0.024	0.344	ND(0.014)	ND(0.05)	ND(0.05)	0.860	4.341
	B17-10	8/11/2005	10	0.032 J	0.124	1.99	ND(0.006)	ND(0.013)	0.179	0.155	0.183	0.984	0.022	0.268	ND(0.014)	ND(0.05)	ND(0.05)	0.358	0.568
	B18-1	8/11/2005	1	0.030 J	0.096 J	0.63	ND(0.006)	0.028 J	0.049	0.127	0.285	1.203	0.013 J	0.133	ND(0.014)	ND(0.05)	ND(0.05)	0.178	4.860
B18	B18-3	8/11/2005	3	ND(0.016)	0.035 J	0.53	ND(0.006)	ND(0.013)	0.063	0.155	0.186	0.319	0.014 J	0.118	ND(0.014)	ND(0.05)	ND(0.05)	0.222	0.233
	B18-5	8/11/2005	5	0.030 J	0.096 J	1.85	ND(0.006)	ND(0.013)	0.046	0.124	0.080	0.046 J	0.010 J	0.088	ND(0.014)	ND(0.05)	ND(0.05)	0.170	0.076
D40	B19-1	8/11/2005	1	ND(0.016)	0.144	1.09	ND(0.006)	0.029 J	0.198	0.126	0.948	13.47	0.052	0.363	ND(0.014)	ND(0.05)	ND(0.05)	0.288	4.431
B19	B19-3	8/11/2005	3	0.022 J	0.024 J	1.52	ND(0.006)	ND(0.013)	0.072	0.169	0.282	1.350	0.020 J	0.127	ND(0.014)	ND(0.05)	ND(0.05)	0.291	0.407
	B19-5	8/11/2005	5	ND(0.016)	ND(0.021)	0.53	ND(0.006)	ND(0.013)	0.043	0.136	0.088	0.244	0.011 J	0.108	ND(0.014)	ND(0.05)	ND(0.05)	0.183	0.079
	B20-1	8/11/2005	1	ND(0.016)	0.037 J	0.57	ND(0.006)	ND(0.013)	0.053	0.123	0.336	0.380	0.007 J	0.133	ND(0.014)	ND(0.05)	ND(0.05)	0.226	0.389
B20	B20-3	8/11/2005	3	0.129	0.127	0.74	ND(0.006)	0.036 J	0.147	0.125	1.485	5.217	0.022	0.238	0.307	ND(0.05)	ND(0.05)	0.197	16.810
	B20-5	8/11/2005	5	0.045 J	0.159	1.04	ND(0.006)	0.028 J	0.412	0.217	1.576	1.540	0.058	0.500	ND(0.014)	ND(0.05)	ND(0.05)	0.456	1.985
	B20-10	8/11/2005	10	0.028 J	0.061 J	0.60	ND(0.006)	ND(0.013)	0.066	0.060	0.208	0.861	0.008 J	0.151	ND(0.014)	ND(0.05)	ND(0.05)	0.092	0.444
	B21-1	8/11/2005	l F	0.036 J	0.070 J	1.23	ND(0.006)	ND(0.013)	0.039	0.084	0.233	0.396	0.020 J	0.120	ND(0.014)	ND(0.05)	ND(0.05)	0.205	0.209
B21	B21-5	8/11/2005	5	ND(0.016)	0.168	1.65	ND(0.006)	ND(0.013)	0.286	0.121	1.036	1.147 ND(0.010)	0.044	0.386	ND(0.014)	ND(0.05)	ND(0.05)	0.286	1.594
	B21-9 B21-9B	8/11/2005 8/11/2005	9	0.079 J 0.068 J	0.190 0.170	1.44 1.22	ND(0.006) ND(0.006)	ND(0.013) 0.027 J	0.221 0.126	0.055 0.117	0.038 0.989	ND(0.019) 3.451	0.027 0.012 J	0.162 0.384	ND(0.014) ND(0.014)	ND(0.05)	ND(0.05) ND(0.05)	0.306 0.851	0.052 3.930
	B21-9B B22-1	8/11/2005	9	0.068 J 0.064 J	0.170	1.75	ND(0.006)		0.126	0.117	0.989	1.352	0.012 3		ND(0.014) ND(0.014)	ND(0.05) ND(0.05)	ND(0.05) ND(0.05)	0.881	1.421
B22	B22-1 B22-5	8/11/2005	5	ND(0.016)	0.251 0.070 J	0.66	ND(0.006)	0.016 J ND(0.013)	0.120	0.099	0.334	0.384	0.032 0.015 J	0.194 0.123	ND(0.014) ND(0.014)	ND(0.05) ND(0.05)	ND(0.05) ND(0.05)	0.233	0.245
022	B22-5 B22-9	8/11/2005	9	0.104	0.070 3	0.87	ND(0.006)	0.181	0.056	0.158	0.169	58.120	0.015 3	0.123	1.611	ND(0.05) ND(0.05)	ND(0.05) ND(0.05)	0.233	49.810
	DZZ-9	0/11/2003	J	0.104	0.142	0.07	(סטט.ט) און	0.101	0.100	0.000	0.204	30.120	U.UZ I	0.110	1.011	(נט.ט)טאו	(נט.ט)טאו	0.220	49.010

20199999.029A/LAN19L104212 December 6, 2019

Table 3 Historical Soil Analytical Data – STLC and TCLP Metals 5800 S. Figueroa Street Los Angeles, California

Bore	Sample Number	Sample Date	(sed septh	Antimony (mg/L)	Polob Wenic (mg/L)	Barin Barin (mg/L)	Beryllium (mg/L)	Cadminm Cadminm (Mg/L)	Total Chromium B0109	6010B (mg/L)	້ອ ດ ວ ວ 6010B (mg/L)	6010B (mg/L)	Molybdenum 6010B (mg/L)	6010B (mg/L)	6010B (mg/L)	6010B (mg/L)	L Hallinm (mg/L)	Mnipaue Agonom	010B (mg/L)
		STLC	· ·	15	5	100	0.75	1	560/5	80	25	5	350	20	1	5	7	24	250
		TCLP	` '	NV	5	100	NV	1	5	NV	NV	5	NV	NV	1	5	NV	NV	NV
SOLUBLE	METALS BY WE								-			_				_			
	B23-1	8/11/2005	1	0.022 J	0.090 J	0.93	ND(0.006)	0.016 J	0.093	0.078	0.570	21.600	0.005 J	0.114	ND(0.014)	ND(0.05)	ND(0.05)	0.103	2.621
B23	B23-3	8/11/2005	3	0.022 J	0.037 J	1.33	ND(0.006)	ND(0.013)	0.028 J	0.071	0.126	1.617	0.008 J	0.091	ND(0.014)	ND(0.05)	ND(0.05)	0.198	0.059
	B23-5	8/11/2005	5	0.024 J	0.065 J	1.52	ND(0.006)	ND(0.013)	0.047	0.067	0.074	0.308	0.012 J	0.069	ND(0.014)	ND(0.05)	ND(0.05)	0.129	0.043
B24	B24-1	8/11/2005	1	0.039 J	0.089 J	0.81	ND(0.006)	ND(0.013)	0.074	0.078	0.277	9.058	ND(0.004)	0.095	ND(0.014)	ND(0.05)	ND(0.05)	0.070	1.437
D24	B24-3	8/11/2005	3	0.032 J	0.056 J	1.24	ND(0.006)	ND(0.013)	0.037	0.093	0.118	1.086	0.012 J	0.092	ND(0.014)	ND(0.05)	ND(0.05)	0.189	0.046
B25	B25-1	8/11/2005	1	0.060 J	0.214	1.26	ND(0.006)	0.015 J	0.149	0.088	0.311	7.135	0.023	0.226	ND(0.014)	ND(0.05)	ND(0.05)	0.184	1.215
DZS	B25-3	8/11/2005	3	0.049 J	0.080 J	1.10	ND(0.006)	ND(0.013)	0.046	0.119	0.172	0.041 J	0.019 J	0.110	ND(0.014)	ND(0.05)	ND(0.05)	0.207	0.081
B26	B26-1	8/11/2005	1	0.058 J	0.124	1.49	ND(0.006)	ND(0.013)	0.072	0.075	0.297	6.203	0.006 J	0.107	ND(0.014)	ND(0.05)	ND(0.05)	0.152	0.916
520	B26-3	8/11/2005	3	0.072 J	ND(0.021)	2.60	ND(0.006)	ND(0.013)	0.023 J	0.060	0.094	0.808	0.015 J	0.084	ND(0.014)	ND(0.05)	ND(0.05)	0.209	0.060
	B27-1	8/11/2005	1	ND(0.016)	0.201	2.38	ND(0.006)	0.020 J	0.286	0.130	1.052	ND(0.019)	ND(0.004)	0.269	ND(0.014)	ND(0.05)	ND(0.05)	0.128	0.938
B27	B27-3	8/11/2005	3	ND(0.016)	0.085 J	0.98	ND(0.006)	0.020 J	0.082	0.122	0.319	1.969	0.025	0.184	ND(0.014)	ND(0.05)	ND(0.05)	0.168	3.914
201 1101	B27-5	8/11/2005	5	0.074 J	0.179	1.87	ND(0.006)	ND(0.013)	0.279	0.146	0.285	0.184	0.036	0.373	ND(0.014)	ND(0.05)	ND(0.05)	0.261	0.643
	E METALS BY TC		40		0.004.1	0.70.1		ND(0.040)	ND(0.000)			ND(0.040)			NID (0.04.4)	NID (0.05)			
B13	B13-10	8/11/2005	10		0.024 J	0.78 J		ND(0.013)	ND(0.006)			ND(0.019)			ND(0.014)	ND (0.05)			
B20	B20-3	8/11/2005	3		ND(0.021)	0.49 J		0.018 J	0.021 J			2.712			0.109	ND (0.05)			
B22	B22-9 B23-1	8/11/2005	9		0.038 J	0.56 J		0.028 J	0.028 J			2.332			ND(0.014)	ND (0.05)			
B23 B24	B23-1 B24-1	8/11/2005 8/11/2005	1		ND(0.021) ND(0.021)	0.94 J 0.92 J		0.015 J ND(0.013)	0.008 J 0.014 J			0.856 0.347			ND(0.014) ND(0.014)	ND (0.05) ND (0.05)			
B25	B25-1	8/11/2005	1		0.046 J	0.92 J 0.84 J		ND(0.013)	0.014 J			ND(0.019)			ND(0.014)	ND (0.05)			
B26	B26-1	8/11/2005	1		0.040 J	0.84 3		ND(0.013)	ND(0.006)			0.100			ND(0.014)	ND (0.05)			
B27	B27-3	8/11/2005	3		0.030 J	0.84		ND(0.013)	ND(0.006)			0.041 J			ND(0.014)	ND (0.05)			
DE!	D2. 0	3/11/2000			0.0010	0.0 1		. 10(0.010)	. 10(0.000)			0.0110			110(0.017)	. 10 (0.00)			

Notes: bgs Below ground surface.

6010B United States Environmental Protection Agency (US EPA) analytical method number.

mg/L Milligrams per liter

STLC California Code of Regulations Title 22 Soluble Threshold Limit Concentration.

TCLP Toxic Characteristic Leaching Procedure.

NV No value available.

ND Not present at concentration at or above the practical quantitation limit (which is shown in parentheses).

J Estimated concentration between method detection limit and practical quantitation limit.

-- Analysis not performed on sample.

Yellow shading Indicates reported concentration is higher than STLC.

20199999.029A/LAN19L104212 December 6, 2019

Table 4
2013 Soil Analytical Data
5800 S. Figueroa Street
Los Angeles, California

					Date	alarına Hirdina								VOC	_					
					Petro	oleum Hydro	carbons							VOC	3					
Bore	Sample Number	Sample Date	Sample Depth	GRO	ТКРН	ТЕРН (С9 - С36)	DRO (C10 - C28)	Motor Oil (C22 - C36)	Butylbenzene	sec-Butylbenzene	4-Chlorotoluene	Ethylbenzene	Isopropylbenzene	p-Isopropyltoluene	Naphthalene	Propylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	m&p-Xylene	o-Xylene
			(feet	8015B (mg/kg)	418.1 (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8015M (mg/kg)	8260B (µg/kg)	8260B (μg/kg)	8260B (µg/kg)	8260B (µg/kg)	8260B (μg/kg)	8260B (μg/kg)	8260B (μg/kg)	8260B (µg/kg)	8260B (μg/kg)	8260B (μg/kg)	8260B (µg/kg)	8260B (μg/kg)
			bgs)																	
		RSL for Residen	ntial Soil	520 / 82	NV	NV	96 / 97	230,000 / 2,400	2,400,000*	2,200,000*	440,000*	5,800	1,900,000	NV	2,000*	3,800,000	300,000	270,000	550,000	650,000
1	KLF-1-10	5/13/2013	10	ND (22)	11,749	4,280	3,240	1,040	1,200	ND (27)	38 J	1,003	786	447	3,456	1,449	42 J	196	ND (75)	ND (28)
1	KLF-1-15	5/13/2013	15	ND (22)	61 J	ND (4)	ND (29)	ND (35)	2,372	1,425	ND (28)	2,146	1,431	1,313	5,485	2,684	7,680	1,764	1,524	855
1	KLF-1-20	5/13/2013	20	ND (1.1)	56 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
1	KLF-1-25	5/13/2013	25	ND (1.1)	38 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-30	5/13/2013	30	ND (1.1)	26 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-35	5/13/2013	35	ND (1.1)	37 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-40	5/13/2013	40	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-45	5/13/2013	45	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
KLF-1	KLF-1-50	5/13/2013	50	ND (1.1)	31 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-55	5/13/2013	55	ND (1.1)	26 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-60	5/13/2013	60	ND (1.1)	ND (18)	4.3 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-65	5/13/2013	65	ND (1.1)	ND (18)	12.1 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-70	5/13/2013	70	ND (1.1)	31 J	12.3 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
 	KLF-1-75	5/13/2013	75	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-80	5/13/2013	80	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-85	5/13/2013	85	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-1-90	5/13/2013	90	ND (1.1)	ND (18)	4.5 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
-	KLF-2-10	5/14/2013	10	ND (22)	13,093	5,540	4,520	1,020	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-2-15	5/14/2013	15	ND (1.1)	1,592	429	ND (29)	429	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
-	KLF-2-20 KLF-2-25	5/14/2013	20	ND (1.1)	ND (18)	12.7 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
-	KLF-2-25 KLF-2-30	5/14/2013 5/14/2013	25	ND (1.1)	ND (18)	ND (4) ND (4)	ND (29) ND (29)	ND (35)	ND (29)	ND (27)	ND (28) ND (28)	ND (30)	ND (33) ND (33)	ND (28) ND (28)	ND (30)	ND (30)	ND (25) ND (25)	ND (28)	ND (75)	ND (28)
	KLF-2-35	5/14/2013	30	ND (1.1)	ND (18)	. ,	` ,	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30) ND (30)	ND (30) ND (30)	ND (25)	ND (28) ND (28)	ND (75) ND (75)	ND (28)
KLF-2	KLF-2-35 KLF-2-40	5/14/2013	35	ND (1.1)	ND (18)	ND (4) 12.3 J	ND (29) ND (29)	ND (35) ND (35)	ND (29) ND (29)	ND (27)	ND (28)	ND (30) ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28) ND (28)
<u> </u>	KLF-2-40 KLF-2-45	5/14/2013	40 45	ND (1.1) ND (1.1)	ND (18) ND (18)		ND (29) ND (29)	ND (35)	ND (29) ND (29)	ND (27) ND (27)	ND (28)	ND (30)	ND (33)		ND (30)	ND (30)	ND (25) ND (25)	ND (28)	ND (75)	
	KLF-2-43 KLF-2-50	5/14/2013	50	ND (1.1) ND (1.1)	ND (18)	5.3 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-2-50 KLF-2-55	5/14/2013	55	ND (1.1) ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-2-60	5/14/2013	60	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-2-65	5/14/2013	65	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
 	KLF-3-10	5/15/2013	10	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
<u> </u>	KLF-3-10	5/15/2013	15	ND (22)	51 J	12.1 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-3-19	5/15/2013	20	ND (22)	ND (18)	12.7 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-3-25	5/15/2013	25	ND (1.1)	ND (18)	12.7 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-3-30	5/15/2013	30	ND (1.1)	ND (18)	8.6 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-3-35	5/15/2013	35	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
KLF-3	KLF-3-40	5/15/2013	40	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-3-45	5/15/2013	45	ND (1.1)	ND (18)	8.6 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-3-50	5/15/2013	50	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-3-55	5/15/2013	55	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
j	KLF-3-60	5/15/2013	60	ND (1.1)	ND (18)	8.8 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
																				. \/

Table 4 2013 Soil Analytical Data 5800 S. Figueroa Street Los Angeles, California

					Petr	oleum Hydro	carbons							VOC	<u> </u>					
					1 01.															
Bore	Sample Number	Sample Date	Sample Depth	GRO	ТКРН	ТЕРН (С9 - С36)	DRO (C10 - C28)	Motor Oil (C22 - C36)	Butylbenzene	sec-Butylbenzene	4-Chlorotoluene	Ethylbenzene	Isopropylbenzene	p-Isopropyltoluene	Naphthalene	Propylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	m&p-Xylene	o-Xylene
			(feet	8015B	418.1	8015M	8015M	8015M	8260B	8260B	8260B	8260B								
			bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)								
	DTSC-SL or	RSL for Resider	ntial Soil	520 / 82	NV	NV	96 / 97	230,000 / 2,400	2,400,000*	2,200,000*	440,000*	5,800	1,900,000	NV	2,000*	3,800,000	300,000	270,000	550,000	650,000
	KLF-4-5	5/16/2013	5	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-4-10	5/16/2013	10	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-4-15 KLF-4-20	5/16/2013 5/16/2013	15	ND (1.1)	ND (18)	ND (4) ND (4)	ND (29) ND (29)	ND (35) ND (35)	ND (29) ND (29)	ND (27) ND (27)	ND (28) ND (28)	ND (30)	ND (33) ND (33)	ND (28) ND (28)	ND (30) ND (30)	ND (30) ND (30)	ND (25) ND (25)	ND (28)	ND (75)	ND (28) ND (28)
	KLF-4-20 KLF-4-25		20	ND (1.1)	ND (18)		, ,	` '	ND (29) ND (29)	` '	ND (28)	ND (30)		ND (28)	ND (30)	ND (30)	` '	ND (28)	ND (75)	
	KLF-4-25 KLF-4-30	5/16/2013 5/16/2013	25 30	ND (1.1) ND (1.1)	29 J 22 J	ND (4) ND (4)	ND (29) ND (29)	ND (35) ND (35)	ND (29) ND (29)	ND (27) ND (27)	ND (28)	ND (30) ND (30)	ND (33) ND (33)	ND (28)	ND (30)	ND (30)	ND (25) ND (25)	ND (28) ND (28)	ND (75) ND (75)	ND (28) ND (28)
	KLF-4-35	5/16/2013	35	ND (1.1)	27 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
KLF-4	KLF-4-40	5/16/2013	40	ND (1.1)	27 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-4-45	5/16/2013	45	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-4-50	5/16/2013	50	ND (1.1)	29 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-4-55	5/16/2013	55	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-4-60	5/16/2013	60	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-4-65	5/16/2013	65	ND (1.1)	29 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-4-70	5/16/2013	70	ND (1.1)	28 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-5	5/16/2013	5	ND (1.1)	273	342	125 J	217	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-10	5/16/2013	10	ND (1.1)	ND (18)	12.4 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-15	5/16/2013	15	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-20	5/16/2013	20	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-25	5/16/2013	25	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-30	5/16/2013	30	ND (1.1)	ND (18)	6.0 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
KLF-5	KLF-5-35	5/16/2013	35	ND (1.1)	ND (18)	7.5 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-40	5/16/2013	40	ND (1.1)	ND (18)	14.3 J	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-45	5/16/2013	45	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-50	5/16/2013	50 55	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-55 KLF-5-60	5/16/2013 5/16/2013	55 60	ND (1.1) ND (1.1)	ND (18) ND (18)	ND (4) ND (4)	ND (29) ND (29)	ND (35) ND (35)	ND (29) ND (29)	ND (27) ND (27)	ND (28) ND (28)	ND (30) ND (30)	ND (33) ND (33)	ND (28) ND (28)	ND (30) ND (30)	ND (30) ND (30)	ND (25) ND (25)	ND (28) ND (28)	ND (75) ND (75)	ND (28) ND (28)
	KLF-5-65	5/16/2013	65	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29) ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-5-70	5/16/2013	70	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-5	5/20/2013	5	ND (1.1)	7,198	1,710	531	1,180	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-10	5/20/2013	10	ND (1.1)	28 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-15	5/20/2013	15	ND (1.1)	29 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-20	5/20/2013	20	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-25	5/20/2013	25	ND (1.1)	36 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-30	5/20/2013	30	ND (1.1)	37 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
KLF-6	KLF-6-35	5/20/2013	35	ND (1.1)	21 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
1,721,0	KLF-6-40	5/20/2013	40	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-45	5/20/2013	45	ND (1.1)	28 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-50	5/20/2013	50	ND (1.1)	43 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-55	5/20/2013	55	ND (1.1)	28 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-60	5/20/2013	60	ND (1.1)	29 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-65	5/20/2013	65	ND (1.1)	22 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-6-70	5/20/2013	70	ND (1.1)	29 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)

Table 4 2013 Soil Analytical Data 5800 S. Figueroa Street Los Angeles, California

					Petro	oleum Hydro	carbons							VOC	6					
Bore	Sample Number	Sample Date	Sample Depth	O 2 8 8 0 15 B	H-RPH	TEPH (C9 - C36)	DRO (C10 - C28)	Motor Oil (C22 - C36)	Butylbenzene	sec-Butylbenzene	82098 4-Chlorotoluene	Ethylbenzene	Isopropylbenzene	p-IsopropyItoluene	Naphthalene	Propylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	m&p-Xylene	o-Xylene
			bgs)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
	DTSC-SL or	RSL for Resider	ntial Soil	520 / 82	NV	NV	96 / 97	230,000 / 2,400	2,400,000*	2,200,000*	440,000*	5,800	1,900,000	NV	2,000*	3,800,000	300,000	270,000	550,000	650,000
	KLF-7-5	5/20/2013	5	ND (1.1)	86 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-10	5/20/2013	10	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-15	5/20/2013	15	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-20	5/20/2013	20	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-25	5/20/2013	25	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-30	5/20/2013	30	ND (1.1)	29 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
KLF-7	KLF-7-35	5/20/2013	35	ND (1.1)	28 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-40	5/20/2013	40	ND (1.1)	28 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-45	5/20/2013	45	ND (1.1)	21 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-50 KLF-7-55	5/20/2013 5/20/2013	50	ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27) ND (27)	ND (28) ND (28)	ND (30)	ND (33)	ND (28) ND (28)	ND (30) ND (30)	ND (30) ND (30)	ND (25) ND (25)	ND (28)	ND (75) ND (75)	ND (28) ND (28)
	KLF-7-55 KLF-7-60	5/20/2013	55 60	ND (1.1) ND (1.1)	ND (18) ND (18)	ND (4) ND (4)	ND (29) ND (29)	ND (35) ND (35)	ND (29) ND (29)	ND (27) ND (27)	ND (28) ND (28)	ND (30) ND (30)	ND (33) ND (33)	ND (28)	ND (30)	ND (30)	ND (25) ND (25)	ND (28) ND (28)	ND (75) ND (75)	ND (28) ND (28)
	KLF-7-65	5/20/2013	65	ND (1.1) ND (1.1)	ND (18)	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)
	KLF-7-70	5/20/2013	70	ND (1.1)	29 J	ND (4)	ND (29)	ND (35)	ND (29)	ND (27)	ND (28)	ND (30)	ND (33)	ND (28)	ND (30)	ND (30)	ND (25)	ND (28)	ND (75)	ND (28)

Notes: VOCs Volatile organic compounds.

bgs Below ground surface.

GRO Gasoline range organics (equivalent to total petroleum hydrocarbons as gasoline).

TRPH Total recoverable petroleum hydrocarbons.
TEPH Total extractable petroleum hydrocarbons.

(C9 - C36) Carbon chain range of analysis.

DRO Diesel range organics (equivalent to total petroleum hydrocarbons as diesel).

8015B (etc.) United States Environmental Protection Agency (US EPA) analytical method number.

mg/kg Milligrams per kilogram. μg/kg Micrograms per kilogram.

μg/kg iviiciograms per kilogra

DTSC-SL or RSL Screening value for residential soil. Values shown with an asterisk (*) are recommended residential soil screening levels provided in the California Department of Toxic Substances Control, Human and Ecological Risk Office's "Human Health Risk Assessment (HHRA) Note, HERO HHRA Note Number: 3, DTSC-modified Screening Levels (DTSC-SLs), Release Date: April 2019." Values with no asterisk are US EPA Regional Screening Levels for residential soil (Hazard Quotient of 1.0, revised November 2019).

RSL values shown for TPH-g, TPH-d, and TPH-o are Aliphatic/Aromatic Low, Medium, and High, respectively. Values shown for VOCs have been converted from mg/kg to µg/kg.

NV No value available.

ND Not present at concentration at or above the method detection limit (which is shown in parentheses).

Estimated concentration between method detection limit and practical quantitation limit.

Yellow shading Indicates reported concentration is higher than residential soil RSL or SL screening value.

Table 5 Soil Screening Level Exceedances Summary 5800 S. Figueroa Street Los Angeles, California

Bore or Other Location	Sample Depth (feet bgs)	Lead	Naphthalene	Soluble Lead	Mercury	Soluble Selenium	DRO	Motor Oil
DTSC-SL or RSL for Residential Soil (mg/kg)		80*	2.0*	NV	1.0*	NV	96 / 97	230,000 / 2,400
STLC (mg/L)		NV	NV	5	NV	1	NV	NV
SB-1	0.5	109						
SB-2	0.5			-			230	
	3	90.9						
SB-3	0.5	184						
	5						780	2,900
SB-4	0.5	181						
	3	98.6					170	
	5						240	2,500
SB-6	0.5	271						
SB-7	0.5	126					830	
	3	108						
SB-8	0.5	125						
	3				2.7			
	5	126			2.1			
	10	401					560	
SB-9	0.5	103						
SB-10	0.5	85.5						
SB-12	0.5	140						
	4						200 J	
	5	115						
B13	10	193.2						
B14	1	82.9		-				
B19	1	96.4		13.47				
B20	3	257.4		5.217				
B21	9	80.4					9,980	
B22	9	1,016		58.120		1.611		
B23	1	329.3		21.600				
B24	1	208.8		9.058				
B25	1	165.6		7.135				
B26	1	147.1		6.203				
B27	3	347.3						
KLF-1	10		3.456				3,240	
	15		5.485	-				
KLF-2	10						4,520	
KLF-5	5						125 J	
KLF-6	5						531	
Excavation	17						24,000	

Notes: bgs Below ground surface.
DRO Diesel range organics.

 ${\tt DTSC\text{-}SL}\ or\ RSL\ Screening\ value\ for\ residential\ soil}.\ Values\ shown\ with\ an\ asterisk\ ({}^\star{})\ are\ recommended\ residential\ soil$

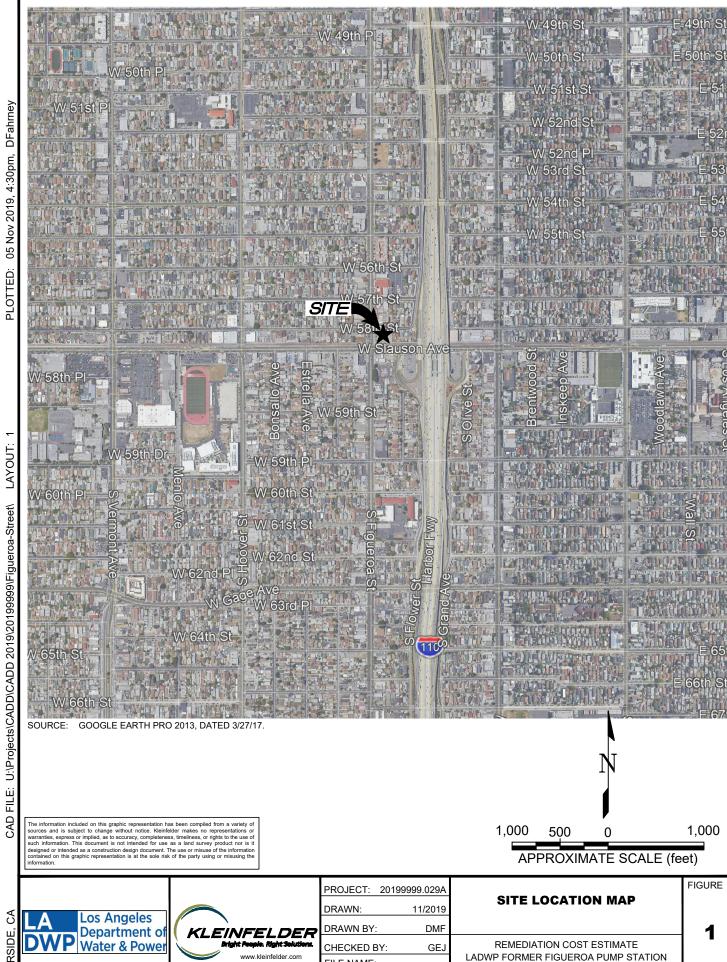
screening levels provided in the California Department of Toxic Substances Control, Human and Ecological Risk Office's "Human Health Risk Assessment (HHRA) Note, HERO HHRA Note Number: 3, DTSC-modified Screening Levels (DTSC-SLs), Release Date: April 2019." Values with no asterisk are US EPA Regional Screening Levels for residential soil (Hazard Quotient of 1.0, revised November 2019).

NV No value available. mg/kg Milligrams per kilogram.

STLC California Code of Regulations Title 22 Soluble Threshold Limit Concentration.

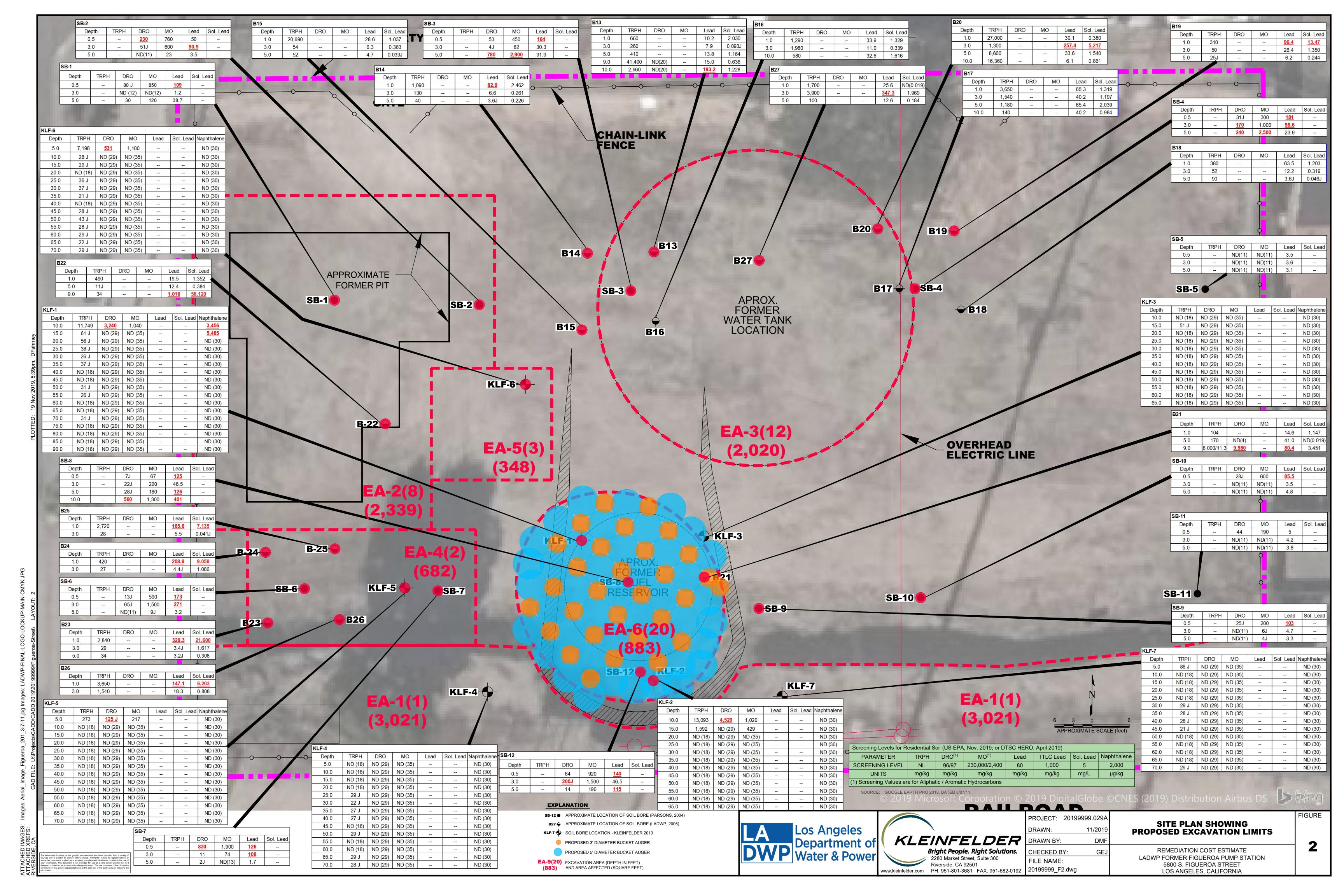
mg/L Milligrams per liter.

-- Indicates reported concentration is below screening level.


Yellow shading Indicates reported concentration is higher than screening level.

Results are reported in mg/kg, except soluble lead and soluble selenium, which are reported in mg/L.

FIGURES


FILE NAME:

20199999_F1.dwg

5800 S. FIGUEROA STREET

LOS ANGELES, CALIFORNIA

RIVERSIDE

